Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Am J Bot ; : e16298, 2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38433501

RESUMEN

PREMISE: Theory predicts that mixed ploidy populations should be short-lived due to strong fitness disadvantages for the rare ploidy. However, mixed ploidy populations are common, suggesting that the fitness costs for rare ploidies are counterbalanced by ecological benefits that emerge when rare. We investigated whether differences in ecological interactions with soil microbes help to maintain a tetraploid-hexaploid population of Larrea tridentata (creosote bush) in the Sonoran Desert, California, United States, where prior work documented ploidy-specific root-associated microbes. METHODS: We used a plant-soil feedback (PSF) experiment to test whether host-specific soil microbes can alter the outcomes of intraploidy vs. interploidy competition. Host-specific soil microbes can build up over time; thus, distance from a host plant can affect the fitness of nearby plants. RESULTS: Seedlings grown in soils from near plants of a different ploidy produced greater biomass relative to seedlings grown in soils from near plants of the same ploidy. Moreover, seedlings grown in soils from near plants of a different ploidy produced more biomass than those grown in soils that were farther from plants of a different ploidy. These results suggest that the ecological consequences of PSF may facilitate the persistence of mixed ploidy populations. CONCLUSIONS: This is the first evidence, to our knowledge, that is consistent with plant-soil microbe feedback as a viable mechanism to maintain the coexistence of multiple ploidy levels in a single population.

2.
J Evol Biol ; 37(3): 325-335, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38332147

RESUMEN

While polyploids are common in nature, existing models suggest that polyploid establishment should be difficult and rare. We explore this apparent paradox by focussing on the role of unreduced gametes, as their union is the main route for the formation of neopolyploids. Production of such gametes is affected by genetic and environmental factors, resulting in variation in the formation rate of unreduced gametes (u). Once formed, neopolyploids face minority cytotype exclusion (MCE) due to a lack of viable mating opportunities. More than a dozen theoretical models have explored factors that could permit neopolyploids to overcome MCE and become established. Until now, however, none have explored variability in u and its consequences for the rate of polyploid establishment. Here, we determine the distribution that best fits the available empirical data on u. We perform a global sensitivity analysis exploring the consequences of using empirical distributions of u to investigate effects on polyploid establishment. We determined that in many cases, u is best fit by a log-normal distribution. We found environmental stochasticity in u dramatically impacts model predictions when compared to a static u. Our results help reconcile previous modelling results suggesting high barriers to the polyploid establishment with the observation that polyploids are common in nature.


Asunto(s)
Células Germinativas , Poliploidía , Humanos , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...